Air Quality and Meteorology

OVERVIEW

Air Quality

- Emissions
- Chemistry
- Characterization

Meteorology

- Basic weather patterns
- Temperature (surface/aloft)
- Winds (surface/aloft)
- Transport
- Clouds
- Review of key features

Air Quality — Types

Primary - emitted directly from source
Secondary - formed in atmosphere
from reaction of primary
pollutants

Precursors - primary pollutants that form secondary pollutants

Air Quality – Major Pollutants

<u>Pollutant</u>	<u>Abbreviation</u>	<u>Type</u>
Carbon Monoxide	CO	Primary
Sulfur Dioxide	SO ₂	Primary
Ozone	O_3	Secondary
Nitrogen Dioxide	NO ₂	Secondary
Hydrocarbon Compounds	HC	Primary & Secondary
Particulate Matter	PM	Primary & Secondary

Air Quality – Emissions

- Man-made sources
 - NO_x through combustion
 - VOCs through combustion and numerous other sources
 - SO₂ through combustion of coal and oil that contains sulfur

- VOCs from trees/vegetation
- NOx from soils (Midwest fertilizer)
- Concentration depends on
 - Source location, density, and strength
 - Meteorology

Air Quality – Emissions

Vertical mixing (VM)

Concentration ∝ S/VM

- Key processes
 - Source location, density, and strength
 - Dispersion (horizontal mixing) wind speed
 - Vertical mixing inversion

Courtesy of New Jersey
Department of Environmental Protection

Air Quality – Chemistry

Simplified view of ozone chemistry

- NO₂ + O₂ + Sunlight → O₃ Production
- NO + O3 → NO2 + O2 Destruction

• NO + VOC + Sunlight → NO2 + VOC' Production of NO2

Key processes

- Ample sunlight (UV)
- •High concentrations of precursors (VOC, NO, NO₂)
 - -Dispersion
 - -Vertical mixing
- Temperature

Air Quality – Meteorology Key Processes

Meteorology key processes

- Dispersion (horizontal mixing)
- Vertical mixing
- Sunlight
- Transport

Variations by

- Weather pattern
- Geography
- Diurnal
- Season

Air Quality – Urban Site

Hourly ozone concentrations on July 23, 2001, at an urban site in Nashville, Tennessee

Air Quality – Rural and Downwind

Hourly ozone concentrations on May 22, 2001, at rural downwind site in Grass Valley (Sacramento), California

Air Quality – High Altitude

Hourly ozone concentrations on May 23, 2001, at a high-altitude site at Fry Pan, North Carolina

- Examine long-term trends for changes in
 - number of high days
 - location of peaks

Number of ozone exceedance days and the three-year running average between 1981-1995 in the Northeast ozone transport region (Chinkin et al., 1995a).

Examine seasonal trends

Average AQI days for PM_{2.5} in Salt Lake City, Utah (1999-2001)

Examine day-of-week relationships

8-hr ozone exceedances by day of week in Columbus, Ohio (1996-2000)

Examine length of episodes

Length of 8-hr Ozone Episodes in the Northeast U.S. (1993-1997)

Length of 8-hr episodes that occurred in the Northeast U.S. during 1993 to 1997. Most episodes are one-day long; however, most exceedance days occur within episodes that are two days or longer. Seventy-eight percent of 8-hr exceedance days occur in 8-hr episodes that are two days or longer.

•

Contour plot of the average number of 8-hr site exceedances per year from 1993 to 1997. The contour lines are drawn for every two days (Dye et al., 1998).

- Evaluating monitoring sites
 - Representativeness
 - street
 - neighborhood
 - urban
 - background
 - downwind
 - Local terrain
 - Proximity to emissions

Monitoring Sites

Summary

Forecasting air quality requires an understanding of the processes that produce pollution:

Emissions

Sunlight

Dispersion

Vertical mixing

Transport

- Next Steps
 - Review of Meteorological Processes
- Questions